Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
Res Sq ; 2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38562777

ABSTRACT

Mitochondrial oxidative phosphorylation (OxPhos) powers brain activity1,2, and mitochondrial defects are linked to neurodegenerative and neuropsychiatric disorders3,4, underscoring the need to define the brain's molecular energetic landscape5-10. To bridge the cognitive neuroscience and cell biology scale gap, we developed a physical voxelization approach to partition a frozen human coronal hemisphere section into 703 voxels comparable to neuroimaging resolution (3×3×3 mm). In each cortical and subcortical brain voxel, we profiled mitochondrial phenotypes including OxPhos enzyme activities, mitochondrial DNA and volume density, and mitochondria-specific respiratory capacity. We show that the human brain contains a diversity of mitochondrial phenotypes driven by both topology and cell types. Compared to white matter, grey matter contains >50% more mitochondria. We show that the more abundant grey matter mitochondria also are biochemically optimized for energy transformation, particularly among recently evolved cortical brain regions. Scaling these data to the whole brain, we created a backward linear regression model integrating several neuroimaging modalities11, thereby generating a brain-wide map of mitochondrial distribution and specialization that predicts mitochondrial characteristics in an independent brain region of the same donor brain. This new approach and the resulting MitoBrainMap of mitochondrial phenotypes provide a foundation for exploring the molecular energetic landscape that enables normal brain functions, relating it to neuroimaging data, and defining the subcellular basis for regionalized brain processes relevant to neuropsychiatric and neurodegenerative disorders.

2.
bioRxiv ; 2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38496679

ABSTRACT

Mitochondrial oxidative phosphorylation (OxPhos) powers brain activity1,2, and mitochondrial defects are linked to neurodegenerative and neuropsychiatric disorders3,4, underscoring the need to define the brain's molecular energetic landscape5-10. To bridge the cognitive neuroscience and cell biology scale gap, we developed a physical voxelization approach to partition a frozen human coronal hemisphere section into 703 voxels comparable to neuroimaging resolution (3×3×3 mm). In each cortical and subcortical brain voxel, we profiled mitochondrial phenotypes including OxPhos enzyme activities, mitochondrial DNA and volume density, and mitochondria-specific respiratory capacity. We show that the human brain contains a diversity of mitochondrial phenotypes driven by both topology and cell types. Compared to white matter, grey matter contains >50% more mitochondria. We show that the more abundant grey matter mitochondria also are biochemically optimized for energy transformation, particularly among recently evolved cortical brain regions. Scaling these data to the whole brain, we created a backward linear regression model integrating several neuroimaging modalities11, thereby generating a brain-wide map of mitochondrial distribution and specialization that predicts mitochondrial characteristics in an independent brain region of the same donor brain. This new approach and the resulting MitoBrainMap of mitochondrial phenotypes provide a foundation for exploring the molecular energetic landscape that enables normal brain functions, relating it to neuroimaging data, and defining the subcellular basis for regionalized brain processes relevant to neuropsychiatric and neurodegenerative disorders.

3.
Int J Neuropsychopharmacol ; 26(7): 501-512, 2023 07 31.
Article in English | MEDLINE | ID: mdl-37243534

ABSTRACT

BACKGROUND: The hypothalamic-pituitary-adrenal (HPA) axis is a major stress response system, and excessive HPA responses can impact major depressive disorder and suicide. We examined relationships between reported early-life adversity (ELA), recent-life stress (RLS), suicide, and corticotropin-releasing hormone (CRH), CRH binding protein, FK506-binding protein (FKBP5), glucocorticoid receptor (GR), and brain-derived neurotrophic factor (BDNF) in postmortem human prefrontal cortex (BA9), and anterior cingulate cortex (BA24). METHODS: Thirteen quadruplets, matched for sex, age, and postmortem interval and consisting of suicide decedents and healthy controls, were divided equally into those with and without ELA. ELA, RLS, and psychiatric diagnoses were determined by psychological autopsy. Protein levels were determined by western blots. RESULTS: There were no suicide- or ELA-related differences in CRH, CRH binding protein, GR, or FKBP5 in BA9 or BA24 and no interaction between suicide and ELA (P > .05). For BDNF, there was an interaction between suicide and ELA in BA24; suicides without ELA had less BDNF than controls without ELA, and controls with ELA had less BDNF than controls without ELA. CRH in BA9 and FKBP5 in anterior cingulate cortex correlated negatively with RLS. Least Absolute Shrinkage and Selection Operator logistic regression with cross-validation found combining BDNF, GR, and FKBP5 BA24 levels predicted suicide, but ELA did not contribute. A calculated "suicide risk score" using these measures had 71% sensitivity and 71% specificity. CONCLUSION: A dysregulated HPA axis is related to suicide but not with ELA. RLS was related to select HPA axis proteins in specific brain regions. BDNF appears to be dysregulated in a region-specific way with ELA and suicide.


Subject(s)
Adverse Childhood Experiences , Depressive Disorder, Major , Suicide , Humans , Brain-Derived Neurotrophic Factor/metabolism , Hypothalamo-Hypophyseal System/metabolism , Heat-Shock Proteins/metabolism , Pituitary-Adrenal System/metabolism , Corticotropin-Releasing Hormone/metabolism , Receptors, Glucocorticoid/metabolism , Stress, Psychological/metabolism
4.
Nature ; 616(7955): 113-122, 2023 04.
Article in English | MEDLINE | ID: mdl-36922587

ABSTRACT

Emerging spatial technologies, including spatial transcriptomics and spatial epigenomics, are becoming powerful tools for profiling of cellular states in the tissue context1-5. However, current methods capture only one layer of omics information at a time, precluding the possibility of examining the mechanistic relationship across the central dogma of molecular biology. Here, we present two technologies for spatially resolved, genome-wide, joint profiling of the epigenome and transcriptome by cosequencing chromatin accessibility and gene expression, or histone modifications (H3K27me3, H3K27ac or H3K4me3) and gene expression on the same tissue section at near-single-cell resolution. These were applied to embryonic and juvenile mouse brain, as well as adult human brain, to map how epigenetic mechanisms control transcriptional phenotype and cell dynamics in tissue. Although highly concordant tissue features were identified by either spatial epigenome or spatial transcriptome we also observed distinct patterns, suggesting their differential roles in defining cell states. Linking epigenome to transcriptome pixel by pixel allows the uncovering of new insights in spatial epigenetic priming, differentiation and gene regulation within the tissue architecture. These technologies are of great interest in life science and biomedical research.


Subject(s)
Chromatin , Epigenome , Mammals , Transcriptome , Animals , Humans , Mice , Chromatin/genetics , Chromatin/metabolism , Epigenesis, Genetic , Epigenomics , Gene Expression Profiling , Gene Expression Regulation , Mammals/genetics , Histones/chemistry , Histones/metabolism , Single-Cell Analysis , Organ Specificity , Brain/embryology , Brain/metabolism , Aging/genetics
5.
Nature ; 609(7926): 375-383, 2022 09.
Article in English | MEDLINE | ID: mdl-35978191

ABSTRACT

Cellular function in tissue is dependent on the local environment, requiring new methods for spatial mapping of biomolecules and cells in the tissue context1. The emergence of spatial transcriptomics has enabled genome-scale gene expression mapping2-5, but the ability to capture spatial epigenetic information of tissue at the cellular level and genome scale is lacking. Here we describe a method for spatially resolved chromatin accessibility profiling of tissue sections using next-generation sequencing (spatial-ATAC-seq) by combining in situ Tn5 transposition chemistry6 and microfluidic deterministic barcoding5. Profiling mouse embryos using spatial-ATAC-seq delineated tissue-region-specific epigenetic landscapes and identified gene regulators involved in the development of the central nervous system. Mapping the accessible genome in the mouse and human brain revealed the intricate arealization of brain regions. Applying spatial-ATAC-seq to tonsil tissue resolved the spatially distinct organization of immune cell types and states in lymphoid follicles and extrafollicular zones. This technology progresses spatial biology by enabling spatially resolved chromatin accessibility profiling to improve our understanding of cell identity, cell state and cell fate decision in relation to epigenetic underpinnings in development and disease.


Subject(s)
Chromatin Assembly and Disassembly , Chromatin Immunoprecipitation Sequencing , Chromatin , Animals , Brain/metabolism , Cell Differentiation , Cell Lineage , Chromatin/genetics , Chromatin/metabolism , Chromatin Assembly and Disassembly/genetics , Chromatin Immunoprecipitation Sequencing/methods , Epigenomics , Gene Expression Profiling , Genome , High-Throughput Nucleotide Sequencing/methods , Humans , Mice , Palatine Tonsil/cytology , Palatine Tonsil/immunology
6.
Brain ; 145(12): 4193-4201, 2022 12 19.
Article in English | MEDLINE | ID: mdl-36004663

ABSTRACT

Infection with the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is associated with acute and postacute cognitive and neuropsychiatric symptoms including impaired memory, concentration, attention, sleep and affect. Mechanisms underlying these brain symptoms remain understudied. Here we report that SARS-CoV-2-infected hamsters exhibit a lack of viral neuroinvasion despite aberrant blood-brain barrier permeability. Hamsters and patients deceased from coronavirus disease 2019 (COVID-19) also exhibit microglial activation and expression of interleukin (IL)-1ß and IL-6, especially within the hippocampus and the medulla oblongata, when compared with non-COVID control hamsters and humans who died from other infections, cardiovascular disease, uraemia or trauma. In the hippocampal dentate gyrus of both COVID-19 hamsters and humans, we observed fewer neuroblasts and immature neurons. Protracted inflammation, blood-brain barrier disruption and microglia activation may result in altered neurotransmission, neurogenesis and neuronal damage, explaining neuropsychiatric presentations of COVID-19. The involvement of the hippocampus may explain learning, memory and executive dysfunctions in COVID-19 patients.


Subject(s)
COVID-19 , Humans , Cytokines , SARS-CoV-2 , Hippocampus , Neurogenesis/physiology
7.
Nat Neurosci ; 25(4): 493-503, 2022 04.
Article in English | MEDLINE | ID: mdl-35383330

ABSTRACT

The hippocampus is the most common seizure focus in people. In the hippocampus, aberrant neurogenesis plays a critical role in the initiation and progression of epilepsy in rodent models, but it is unknown whether this also holds true in humans. To address this question, we used immunofluorescence on control healthy hippocampus and surgical resections from mesial temporal lobe epilepsy (MTLE), plus neural stem-cell cultures and multi-electrode recordings of ex vivo hippocampal slices. We found that a longer duration of epilepsy is associated with a sharp decline in neuronal production and persistent numbers in astrogenesis. Further, immature neurons in MTLE are mostly inactive, and are not observed in cases with local epileptiform-like activity. However, immature astroglia are present in every MTLE case and their location and activity are dependent on epileptiform-like activity. Immature astroglia, rather than newborn neurons, therefore represent a potential target to continually modulate adult human neuronal hyperactivity.


Subject(s)
Epilepsy, Temporal Lobe , Epilepsy , Hippocampus , Humans , Magnetic Resonance Imaging , Neurogenesis , Seizures
8.
Biol Psychiatry ; 85(10): 850-862, 2019 05 15.
Article in English | MEDLINE | ID: mdl-30819514

ABSTRACT

BACKGROUND: Early life adversity (ELA) increases major depressive disorder (MDD) and suicide risk and potentially affects dentate gyrus (DG) plasticity. We reported smaller DG and fewer granular neurons (GNs) in MDD. ELA effects on DG plasticity in suicide decedents with MDD (MDDSui) and resilient subjects (ELA history without MDD or suicide) are unknown. METHODS: We quantified neural progenitor cells (NPCs), GNs, glia, and DG volume in whole hippocampus postmortem in four groups of drug-free, neuropathology-free subjects (N = 52 total): psychological autopsy-defined MDDSui and control subjects with and without ELA (before 15 years of age). RESULTS: ELA was associated with larger DG (p < .0001) and trending fewer NPCs (p = .0190) only in control subjects in whole DG, showing no effect on NPCs and DG volume in MDDSui. ELA exposure was associated with more GNs (p = .0003) and a trend for more glia (p = .0160) in whole DG in MDDSui and control subjects. MDDSui without ELA had fewer anterior and mid DG GNs (p < .0001), fewer anterior DG NPCs (p < .0001), and smaller whole DG volume (p = .0005) compared with control subjects without ELA. In MDDSui, lower Global Assessment Scale score correlated with fewer GNs and smaller DG. CONCLUSIONS: Resilience to ELA involves a larger DG, perhaps related to more neurogenesis depleting NPCs, and because mature GNs and glia numbers do not differ in the resilient group, perhaps there are effects on process extension and synaptic load that can be examined in future studies. In MDDSui without ELA, smaller DG volume, with fewer GNs and NPCs, suggests less neurogenesis and/or more apoptosis and dendrite changes.


Subject(s)
Adverse Childhood Experiences , Dentate Gyrus/pathology , Depressive Disorder, Major/pathology , Depressive Disorder, Major/psychology , Neurons/pathology , Resilience, Psychological , Suicide/psychology , Adolescent , Adult , Depressive Disorder, Major/complications , Female , Humans , Male , Middle Aged , Neural Stem Cells/pathology , Neuroglia/pathology , Young Adult
10.
Cell Rep ; 23(11): 3183-3196, 2018 06 12.
Article in English | MEDLINE | ID: mdl-29898391

ABSTRACT

Stress exposure is associated with the pathogenesis of psychiatric disorders, including post-traumatic stress disorder (PTSD) and major depressive disorder (MDD). Here, we show in rodents that chronic stress exposure rapidly and transiently elevates hippocampal expression of Kruppel-like factor 9 (Klf9). Inducible genetic silencing of Klf9 expression in excitatory forebrain neurons in adulthood prior to, but not after, onset of stressor prevented chronic restraint stress (CRS)-induced potentiation of contextual fear acquisition in female mice and chronic corticosterone (CORT) exposure-induced fear generalization in male mice. Klf9 silencing prevented chronic CORT and CRS induced enlargement of dendritic spines in the ventral hippocampus of male and female mice, respectively. KLF9 mRNA density was increased in the anterior dentate gyrus of women, but not men, with more severe recent stressful life events and increased mortality. Thus, Klf9 functions as a stress-responsive transcription factor that mediates circuit and behavioral resilience in a sex-specific manner.


Subject(s)
Dendritic Spines/metabolism , Kruppel-Like Transcription Factors/metabolism , Neurons/metabolism , Stress, Psychological , Animals , Corticosterone/pharmacology , Dendritic Spines/drug effects , Dendritic Spines/pathology , Dentate Gyrus/metabolism , Female , Gene Silencing , Hippocampus/metabolism , Kruppel-Like Transcription Factors/genetics , Male , Mice , Mice, Transgenic , Neurons/pathology , Sex Factors
11.
Cell Stem Cell ; 22(4): 589-599.e5, 2018 04 05.
Article in English | MEDLINE | ID: mdl-29625071

ABSTRACT

Adult hippocampal neurogenesis declines in aging rodents and primates. Aging humans are thought to exhibit waning neurogenesis and exercise-induced angiogenesis, with a resulting volumetric decrease in the neurogenic hippocampal dentate gyrus (DG) region, although concurrent changes in these parameters are not well studied. Here we assessed whole autopsy hippocampi from healthy human individuals ranging from 14 to 79 years of age. We found similar numbers of intermediate neural progenitors and thousands of immature neurons in the DG, comparable numbers of glia and mature granule neurons, and equivalent DG volume across ages. Nevertheless, older individuals have less angiogenesis and neuroplasticity and a smaller quiescent progenitor pool in anterior-mid DG, with no changes in posterior DG. Thus, healthy older subjects without cognitive impairment, neuropsychiatric disease, or treatment display preserved neurogenesis. It is possible that ongoing hippocampal neurogenesis sustains human-specific cognitive function throughout life and that declines may be linked to compromised cognitive-emotional resilience.


Subject(s)
Aging , Dentate Gyrus/metabolism , Hippocampus/metabolism , Neurogenesis , Adolescent , Adult , Aged , Dentate Gyrus/cytology , Hippocampus/cytology , Humans , Middle Aged , Neurons/cytology , Neurons/metabolism , Young Adult
12.
Int J Neuropsychopharmacol ; 21(6): 528-538, 2018 06 01.
Article in English | MEDLINE | ID: mdl-29432620

ABSTRACT

Background: Brain-derived neurotrophic factor is implicated in the pathophysiology of major depressive disorder and suicide. Both are partly caused by early life adversity, which reduces brain-derived neurotrophic factor protein levels. This study examines the association of brain-derived neurotrophic factor Val66Met polymorphism and brain brain-derived neurotrophic factor levels with depression and suicide. We hypothesized that both major depressive disorder and early life adversity would be associated with the Met allele and lower brain brain-derived neurotrophic factor levels. Such an association would be consistent with low brain-derived neurotrophic factor mediating the effect of early life adversity on adulthood suicide and major depressive disorder. Methods: Brain-derived neurotrophic factor Val66Met polymorphism was genotyped in postmortem brains of 37 suicide decedents and 53 nonsuicides. Additionally, brain-derived neurotrophic factor protein levels were determined by Western blot in dorsolateral prefrontal cortex (Brodmann area 9), anterior cingulate cortex (Brodmann area 24), caudal brainstem, and rostral brainstem. The relationships between these measures and major depressive disorder, death by suicide, and reported early life adversity were examined. Results: Subjects with the Met allele had an increased risk for depression. Depressed patients also have lower brain-derived neurotrophic factor levels in anterior cingulate cortex and caudal brainstem compared with nondepressed subjects. No effect of history of suicide death or early life adversity was observed with genotype, but lower brain-derived neurotrophic factor levels in the anterior cingulate cortex were found in subjects who had been exposed to early life adversity and/or died by suicide compared with nonsuicide decedents and no reported early life adversity. Conclusions: This study provides further evidence implicating low brain brain-derived neurotrophic factor and the brain-derived neurotrophic factor Met allele in major depression risk. Future studies should seek to determine how altered brain-derived neurotrophic factor expression contributes to depression and suicide.


Subject(s)
Brain-Derived Neurotrophic Factor/genetics , Brain-Derived Neurotrophic Factor/metabolism , Brain/metabolism , Depressive Disorder, Major/genetics , Depressive Disorder, Major/metabolism , Suicide , Adult , Adult Survivors of Child Adverse Events , Alleles , Brain/pathology , Depressive Disorder, Major/pathology , Female , Genetic Association Studies , Genetic Predisposition to Disease , Humans , Male , Middle Aged , Polymorphism, Single Nucleotide
13.
Depress Anxiety ; 33(6): 531-540, 2016 06.
Article in English | MEDLINE | ID: mdl-27030168

ABSTRACT

INTRODUCTION: We tested the relationship between genotype, gene expression and suicidal behavior and major depressive disorder (MDD) in live subjects and postmortem samples for three genes, associated with the hypothalamic-pituitary-adrenal axis, suicidal behavior, and MDD; FK506-binding protein 5 (FKBP5), Spindle and kinetochore-associated protein 2 (SKA2), and Glucocorticoid Receptor (NR3C1). MATERIALS AND METHODS: Single-nucleotide polymorphisms (SNPs) and haplotypes were tested for association with suicidal behavior and MDD in a live (N = 277) and a postmortem sample (N = 209). RNA-seq was used to examine gene and isoform-level brain expression postmortem (Brodmann Area 9; N = 59). Expression quantitative trait loci (eQTL) relationships were examined using a public database (UK Brain Expression Consortium). RESULTS: We identified a haplotype within the FKBP5 gene, present in 47% of the live subjects, which was associated with increased risk of suicide attempt (OR = 1.58, t = 6.03, P = .014). Six SNPs on this gene, three SNPs on SKA2, and one near NR3C1 showed before-adjustment association with attempted suicide, and two SNPs of SKA2 with suicide death, but none stayed significant after adjustment for multiple testing. Only the SKA2 SNPs were related to expression in the prefrontal cortex (pFCTX). One NR3C1 transcript had lower expression in suicide relative to nonsuicide sudden death cases (b = -0.48, SE = 0.12, t = -4.02, adjusted P = .004). CONCLUSION: We have identified an association of FKBP5 haplotype with risk of suicide attempt and found an association between suicide and altered NR3C1 gene expression in the pFCTX. Our findings further implicate hypothalamic pituitary axis dysfunction in suicidal behavior.


Subject(s)
Chromosomal Proteins, Non-Histone/genetics , Depressive Disorder, Major/genetics , Prefrontal Cortex/metabolism , Receptors, Glucocorticoid/genetics , Suicide , Tacrolimus Binding Proteins/genetics , Adult , Female , Genotype , Humans , Male , Middle Aged , Polymorphism, Single Nucleotide
14.
Am J Med Genet B Neuropsychiatr Genet ; 171B(3): 414-426, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26892569

ABSTRACT

Gamma-amino butyric acid (GABA) and glutamate are the major inhibitory and excitatory neurotransmitters in the mammalian central nervous system, respectively, and have been associated with suicidal behavior and major depressive disorder (MDD). We examined the relationship between genotype, brain transcriptome, and MDD/suicide for 24 genes involved in GABAergic and glutamatergic signaling. In part 1 of the study, 119 candidate SNPs in 24 genes (4 transporters, 4 enzymes, and 16 receptors) were tested for associations with MDD and suicidal behavior in 276 live participants (86 nonfatal suicide attempters with MDD and 190 non-attempters of whom 70% had MDD) and 209 postmortem cases (121 suicide deaths of whom 62% had MDD and 88 sudden death from other causes of whom 11% had MDD) using logistic regression adjusting for sex and age. In part 2, RNA-seq was used to assay isoform-level expression in dorsolateral prefrontal cortex of 59 postmortem samples (21 with MDD and suicide, 9 MDD without suicide, and 29 sudden death non-suicides and no psychiatric illness) using robust regression adjusting for sex, age, and RIN score. In part 3, SNPs with subthreshold (uncorrected) significance levels below 0.05 for an association with suicidal behavior and/or MDD in part 1 were tested for eQTL effects in prefrontal cortex using the Brain eQTL Almanac (www.braineac.org). No SNPs or transcripts were significant after adjustment for multiple comparisons. However, a protein coding transcript (ENST00000414552) of the GABA A receptor, gamma 2 (GABRG2) had lower brain expression postmortem in suicide (P = 0.01) and evidence for association with suicide death (P = 0.03) in a SNP that may be an eQTL in prefrontal cortex (rs424740, P = 0.02). These preliminary results implicate GABRG2 in suicide and warrant further investigation and replication in larger samples.


Subject(s)
Depressive Disorder, Major/genetics , Genomics/methods , Glutamic Acid/metabolism , Neurotransmitter Agents/metabolism , Suicidal Ideation , gamma-Aminobutyric Acid/metabolism , Adult , Female , Gene Expression Regulation , Genotype , Humans , Male , Middle Aged , Pilot Projects , Polymorphism, Single Nucleotide/genetics , Postmortem Changes
15.
J Neurosci ; 34(37): 12379-93, 2014 Sep 10.
Article in English | MEDLINE | ID: mdl-25209278

ABSTRACT

Early-life serotonin [5-hydroxytryptamine (5-HT)] signaling modulates brain development, which impacts adult behavior, but 5-HT-sensitive periods, neural substrates, and behavioral consequences remain poorly understood. Here we identify the period ranging from postnatal day 2 (P2) to P11 as 5-HT sensitive, with 5-HT transporter (5-HTT) blockade increasing anxiety- and depression-like behavior, and impairing fear extinction learning and memory in adult mice. Concomitantly, P2-P11 5-HTT blockade causes dendritic hypotrophy and reduced excitability of infralimbic (IL) cortex pyramidal neurons that normally promote fear extinction. By contrast, the neighboring prelimbic (PL) pyramidal neurons, which normally inhibit fear extinction, become more excitable. Excitotoxic IL but not PL lesions in adult control mice reproduce the anxiety-related phenotypes. These findings suggest that increased 5-HT signaling during P2-P11 alters adult mPFC function to increase anxiety and impair fear extinction, and imply a differential role for IL and PL neurons in regulating affective behaviors. Together, our results support a developmental mechanism for the etiology and pathophysiology of affective disorders and fear-related behaviors.


Subject(s)
Aging/metabolism , Anxiety/metabolism , Depression/metabolism , Extinction, Psychological , Fear , Prefrontal Cortex/physiopathology , Serotonin/metabolism , Animals , Animals, Newborn , Anxiety/complications , Behavior, Animal , Depression/complications , Female , Male , Mice
16.
Int J Neuropsychopharmacol ; 17(12): 1923-33, 2014 Dec.
Article in English | MEDLINE | ID: mdl-24969726

ABSTRACT

Modest antidepressant response rates of mood disorders (MD) encourage benzodiazepine (BZD) co-medication with debatable benefit. Adult hippocampal neurogenesis may underlie antidepressant responses, but diazepam co-administration impairs murine neuron maturation and survival in response to fluoxetine. We counted neural progenitor cells (NPCs), mitotic cells, and mature granule neurons post-mortem in dentate gyrus (DG) from subjects with: untreated Diagnostic and Statistical Manual of Mental Disorders (DSM) IV MD (n = 17); antidepressant-treated MD (MD*ADT, n = 10); benzodiazepine-antidepressant-treated MD (MD*ADT*BZD, n = 7); no psychopathology or treatment (controls, n = 18). MD*ADT*BZD had fewer granule neurons vs. MD*ADT in anterior DG and vs. controls in mid DG, and did not differ from untreated-MD in any DG subregion. MD*ADT had more granule neurons than untreated-MD in anterior and mid DG and comparable granule neuron number to controls in all dentate subregions. Untreated-MD had fewer granule neurons than controls in anterior and mid DG, and did not differ from any other group in posterior DG. MD*ADT*BZD had fewer NPCs vs. MD*ADT in mid DG. MD*ADT had more NPCs vs. untreated-MD and controls in anterior and mid DG. MD*ADT*BZD and MD*ADT had more mitotic cells in anterior DG vs. controls and untreated-MD. There were no between-group differences in mid DG in mitotic cells or in posterior DG for any cell type. Our results in mid-dentate, and to some degree anterior dentate, gyrus are consistent with murine findings that benzodiazepines counteract antidepressant-induced increases in neurogenesis by interfering with progenitor proliferation. We also confirmed, in this expanded sample, our previous finding of granule neuron deficit in untreated MD.


Subject(s)
Antidepressive Agents/therapeutic use , Benzodiazepines/therapeutic use , Dentate Gyrus/drug effects , Fluoxetine/therapeutic use , Mood Disorders/drug therapy , Adult , Dentate Gyrus/pathology , Female , Humans , Immunohistochemistry , Male , Middle Aged , Mitosis/drug effects , Mood Disorders/pathology , Neural Stem Cells/drug effects , Neural Stem Cells/pathology , Neurons/drug effects , Neurons/pathology
17.
J Neurosci Methods ; 230: 20-9, 2014 Jun 15.
Article in English | MEDLINE | ID: mdl-24747874

ABSTRACT

BACKGROUND: Golgi stains are notoriously capricious, particularly when applied to human brain. The well-known difficulties, which include complete failure of impregnation, patchy staining, unstable staining, and extensive crystalline deposits in superficial sections, have discouraged many from attempting to use these techniques. A reliable method that produces uniform impregnation in tissue from human autopsies and experimental animals is needed. NEW METHOD: The method described, "NeoGolgi", modifies previous Golgi-Cox protocols (Glaser and Van der Loos, 1981). Changes include: much longer time (>10 weeks) in Golgi solution, agitation on a slowly rocking platform, more gradual infiltration with Parlodion, more thorough removal of excess staining solution during embedding, and shorter exposure to ammonia after infiltration. RESULTS: The procedure has successfully stained over 220 consecutive frontal or hippocampal blocks from more than 175 consecutive human autopsy cases. Dendritic spines are easily recognized, and background is clear, allowing examination of very thick (200 µm) sections. Stained neurons are evenly distributed within cortical regions. The stain is stable for at least eight years. Most importantly, all stained neurons are apparently well-impregnated, eliminating ambiguity between pathology and poor impregnation that is inherent to other methods. COMPARISON WITH EXISTING METHODS: Most methods of Golgi staining are poorly predictable. They often fail completely, staining is patchy, and abnormal morphology is often indistinguishable from poor impregnation. "NeoGolgi" overcomes these problems. CONCLUSION: Starting with unfixed tissue, it is possible to obtain Golgi staining of predictably high quality in brains from human autopsies and experimental animals.


Subject(s)
Brain/cytology , Neurons/cytology , Staining and Labeling/methods , Adolescent , Adult , Aged , Aged, 80 and over , Animals , Autopsy , Dendrites , Dendritic Spines , Frontal Lobe/cytology , Hippocampus/cytology , Humans , Mice , Middle Aged , Rats , Reproducibility of Results , Tissue Fixation/methods , Young Adult
18.
Neuropsychopharmacology ; 38(6): 1068-77, 2013 May.
Article in English | MEDLINE | ID: mdl-23303074

ABSTRACT

Smaller hippocampal volume is reported in major depressive disorder (MDD). We hypothesize that it may be related to fewer granule neurons (GN) in the dentate gyrus (DG), a defect possibly reversible with antidepressants. We studied age-, sex-, and postmortem interval-matched groups: no major psychopathology (controls); unmedicated-MDD; and MDD treated with serotonin reuptake inhibitors (MDD*SSRI) or tricyclics (MDD*TCA). Frozen right hippocampi were fixed, sectioned (50 µm), immunostained with neuronal nuclear marker (NeuN), and counterstained with hematoxylin. GN and glial number, and DG and granule cell layer (GCL) volumes were stereologically estimated. Fewer GNs in the anterior DG were present in unmedicated-MDDs compared with controls (p=0.013). Younger age of MDD onset correlated with fewer GNs (p=0.021). Unmedicated-MDDs had fewer mid-DG GNs than MDD*SSRIs (p=0.028) and controls (p=0.032). Anterior GCL glial number did not differ between groups. Anterior/mid GCL volume was smaller in unmedicated-MDDs vs controls (p=0.008) and larger in MDD*SSRIs vs unmedicated-MDDs (p<0.001), MDD*TCAs (p<0.001), and controls (p<0.001). Anterior GCL volume and GN number (r=0.594, p=0.001), and mid DG volume and GN number (r=0.398, p=0.044) were correlated. Anterior DG capillary density correlated with GN number (p=0.027), and with GCL (p=0.024) and DG (r=0.400, p=0.047) volumes. Posterior DG volume and GN number did not differ between groups. Fewer GNs in unmedicated-MDD without fewer neuronal progenitor cells, as previously reported, suggests a cell maturation or survival defect, perhaps related to MDD duration. This may contribute to a smaller hippocampus and is potentially reversed by SSRIs. Postmortem studies are correlative and animal studies are needed to test implied causal relationships.


Subject(s)
Antidepressive Agents/therapeutic use , Depressive Disorder, Major/drug therapy , Depressive Disorder, Major/pathology , Hippocampus/pathology , Neurons/drug effects , Neurons/pathology , Adult , Antidepressive Agents/pharmacology , Cell Count/methods , Cross-Sectional Studies , Cytoplasmic Granules/drug effects , Cytoplasmic Granules/pathology , Dentate Gyrus/cytology , Dentate Gyrus/drug effects , Female , Hippocampus/cytology , Hippocampus/drug effects , Humans , Male , Middle Aged , Organ Size , Treatment Outcome
19.
Biol Psychiatry ; 72(7): 562-71, 2012 Oct 01.
Article in English | MEDLINE | ID: mdl-22652019

ABSTRACT

BACKGROUND: Adult neurogenesis is coupled to angiogenesis in neurogenic niches in the dentate gyrus (DG) and increased by antidepressants in rodents. We hypothesized that, in major depressive disorder (MDD), antidepressants increase neural progenitor cells (NPCs) and capillaries in the human DG. METHODS: Neural progenitor cells and capillaries, detected on hippocampal sections by immunohistochemistry for neural stem cell protein, were quantified by stereology in matched MDDs (untreated, n = 12), MDD treated with selective serotonin reuptake inhibitors (MDD*SSRI, n = 6) or tricyclic antidepressants (MDD*TCA, n = 6), and nonpsychiatric control subjects (n = 12), all confirmed by psychological autopsy. RESULTS: The MDD*SSRI had a larger capillary area and more NPCs versus MDDs (p = .034 and p = .008, respectively) and control subjects (p = .010 and p = .002, respectively) in the whole DG, more NPCs in the anterior (pes, p = .042) and central (midbody, p = .004) DG, and greater capillary area in the pes (p = .002) and midbody (p = .021). The NPC number and capillary area correlated positively in the whole sample (R2 = .454, p < .001) and in treated subjects (R2 = .749, p = .001). We found no NPCs or antidepressant-related angiogenesis in CA1 and parahippocampal gyrus. The DG volume correlated positively with NPC number (p = .004) and capillary area (p < .001) and differed between groups in whole hippocampus (p = .013) and midbody (p = .036). Age negatively correlated with NPC number (p = .042), capillary area (p = .037), and bifurcations (p = .030). No gender effect was detected. CONCLUSIONS: Antidepressants increase human hippocampal NPCs and angiogenesis selectively in the anterior and mid DG. These results raise the possibility of a causal relationship between angiogenesis and neurogenesis, as seen in other proliferating tissues, and support their possible role in the mechanism of action of antidepressants.


Subject(s)
Adult Stem Cells/drug effects , Antidepressive Agents/pharmacology , Cell Proliferation/drug effects , Depressive Disorder, Major/pathology , Hippocampus/physiopathology , Neovascularization, Physiologic/drug effects , Adult , Analysis of Variance , Antidepressive Agents/therapeutic use , Cell Count , Depressive Disorder, Major/drug therapy , Female , Hippocampus/drug effects , Humans , Intermediate Filament Proteins/metabolism , Ki-67 Antigen/metabolism , Male , Middle Aged , Nerve Tissue Proteins/metabolism , Nestin , Platelet Endothelial Cell Adhesion Molecule-1/metabolism , Postmortem Changes
20.
Neuropsychopharmacology ; 34(11): 2376-89, 2009 Oct.
Article in English | MEDLINE | ID: mdl-19606083

ABSTRACT

Selective serotonin reuptake inhibitors (SSRIs) and tricyclic antidepressants (TCAs) increase neurogenesis in the dentate gyrus (DG) of rodents and nonhuman primates. We determined whether SSRIs or TCAs increase neural progenitor (NPCs) and dividing cells in the human DG in major depressive disorder (MDD). Whole frozen hippocampi from untreated subjects with MDD (N=5), antidepressant-treated MDD (MDDT, N=7), and controls (C, N=7) were fixed, sectioned, and immunostained for NPCs and dividing cell markers (nestin and Ki-67, respectively), NeuN and GFAP, in single and double labeling. NPC and dividing cell numbers in the DG were estimated by stereology. Clinical data were obtained by psychological autopsy, and by toxicological and neuropathological examination performed on all subjects. NPCs decreased with age (p = 0.034). Females had more NPCs than males (p = 0.023). Correcting for age and sex, MDDT receiving SSRIs had more NPCs than untreated MDD (p < or = 0.001) and controls (p < or = 0.001), NPCs were not different in SSRI- and TCA-treated MDDT (p = 0.169). Dividing cell number, unaffected by age or sex, was greater in MDDT receiving TCAs than in untreated MDD (p < or = 0.001), SSRI-treated MDD (p = 0.001), and controls (p < or = 0.001). The increase of NPCs and dividing cells in MDDT was localized to the rostral DG. MDDT had a larger DG volume compared with untreated MDD or controls (p = 0.009). Antidepressants increase NPC number in the anterior human DG. Whether this finding is critical or necessary for the antidepressants effect remains to be determined.


Subject(s)
Adult Stem Cells/drug effects , Antidepressive Agents/pharmacology , Dentate Gyrus/drug effects , Neurons/drug effects , Adolescent , Adult , Adult Stem Cells/physiology , Aging , Antidepressive Agents, Tricyclic/pharmacology , Cell Division/drug effects , Cell Division/physiology , Dentate Gyrus/pathology , Dentate Gyrus/physiopathology , Depressive Disorder, Major/drug therapy , Depressive Disorder, Major/physiopathology , Female , Humans , Male , Middle Aged , Neurons/physiology , Organ Size , Selective Serotonin Reuptake Inhibitors/pharmacology , Sex Characteristics , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...